
Understanding the Teaching Context of First Year ICT Education in
Australia

 Matthew Butler Judy Sheard Michael Morgan
 Monash University Monash University Monash University
 Australia Australia Australia
 matthew.butler@monash.edu judy.sheard@monash.edu michael.morgan@monash.edu

 Katrina Falkner Simon Amali Weerasinghe
 University of Adelaide University of Newcastle University of Adelaide
 Australia Australia Australia
katrina.falkner@adelaide.edu.au simon@newcastle.edu.au amali.weerasinghe@adelaide.edu.au

Abstract
This paper reports on an investigation of the teaching
context of first-year Information and Communications
Technology (ICT) courses at Australian universities and
the influences of this on students’ learning experiences.
This is part of a larger project which aimed to identify and
disseminate good practices in ICT teaching at Australian
universities with a specific focus on the first-year
experience. We conducted a systematic review of the
research literature from the previous five years and an
online search of information on existing courses and
content, and interviewed 30 academics concerned with
design and delivery of the first-year learning experience
in 25 Australian universities. From our study of teaching
context we gained a comprehensive view of the current
curricula, teaching models and teaching spaces and were
able to outline the unique challenges that our first-year
ICT students face and to recommend areas for further
investigation..
Keywords: First Year; Student Experience; Curriculum;
Learning Spaces.

1 Introduction
The transition from secondary to tertiary studies is a

difficult process for many students and it is therefore
important to understand the influences on this experience.
The relatively high rate of attrition in ICT courses
indicates that there may be challenges that are unique to
this field. While there are a number of studies of the first-
year experience across the university sector, to investigate
these challenges it is necessary to consider the ICT
context. The volume of the literature concerned with
specific ICT education indicates that a lot of worthwhile
research is being conducted but this research needs to be
properly collated and evaluated in order to drive change
in practice.

In this paper we report findings of a study that
investigated the teaching context in first year Information

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

and Communications Technology (ICT) courses in
Australia. The study comprised a review of recent
literature on what content is taught in ICT courses, the
teaching delivery models used and where the teaching
takes place; a survey of Australian university websites;
and interviews of Australian academics involved in
teaching first year ICT courses. The aims of the study
were: 1) to gain an overview of what is taught in first year
ICT courses in Australia; 2) to gain understanding of the
teaching delivery models used; 3) to gain understanding
of where teaching is conducted; and 4) to identify
examples of good practice in first year ICT courses in
Australia that could be adopted and disseminated widely.
This study is part of a larger project of teaching practices
in first year ICT courses.

2 Research Approach
This section describes the approach used to investigate

the teaching context in the first year of ICT courses. The
investigation was part of a project that investigated the
broader topic of research and practice in ICT courses in
Australia. To conduct the project, the team developed a
framework with six themes that together describe the
learning experience: “what we teach”, “where we teach”,
“how we teach”, “how we assess”, “learning support” and
“student support”. As the focus of this paper is about
teaching context, only findings from the “what we teach”
and “where we teach” themes will be reported.

The project was conducted in two phases:
Phase 1, Literature review: An examination of

current trends and good practice in ICT education
nationally and internationally was conducted in the form
of a detailed systematic review of relevant research
literature. The review covered national project reports and
key journals and conferences in computing education.

Phase 2, Survey of current practice: Information
about ICT courses in Australia was gathered from a
survey of university websites. In addition, extensive
interviews were conducted with 30 first-year ICT
academics from 25 universities in Australia, using an
interview script based upon the six themes. All
universities that delivered ICT courses were approached.
Exemplars of good practice were identified from the the
interviews.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

101

2.1 Literature Review
In order to identify current research trends and issues

concerning the first-year experience of ICT students in
higher education, particularly in the Australian context, a
detailed and systematic review of the available literature
was conducted. To ensure currency, the scope of the
literature was limited to research papers published
between 2009 and 2014. Full peer-reviewed research
papers published in high-quality academic journals and
conferences relevant to the area of study were targeted.

The review began with a series of keyword searches in
Google Scholar of relevant terms in the date range from
2009 to 2014.	 Combinations of keyword searches were
carried out in Google Scholar and the searches of
combinations of terms continued until no new relevant
research papers were being identified. Similar keyword
searches were also conducted in the IEEE Xplore and
ACM Digital Library databases. In order to ensure that no
relevant literature was overlooked, a manual search of
selected high-quality research journals and conferences in
the area of computing education was conducted for the
years 2009-2014.

2.2 Survey of current practice
A survey of current practice was conducted via a

survey of online information on ICT courses at all
Australian universities and interviews of relevant
academics. The purpose of the interviews was to collect
detailed information about teaching practices and factors
impacting the first-year experience of ICT students in the
Australian higher education context. In order to gain this
information the project targeted academic staff directly
involved in the design, coordination and delivery of first-
year courses, as these participants were likely to provide
the required insights into the first-year experience and to
be in a position to highlight recent changes and examples
of good practice.

Participants were selected from each participating
university in Australia that delivered an ICT course.
Project members nominated relevant people at various
universities from their knowledge of the ICT education
community. Where this could not be done, the contact
details listed on faculty and degree websites were used to
initiate e-mail contact. Thirty academics from twenty-five
Australian Universities were interviewed. These included
six Group of Eight (Go8), three Australian Technology
Network (ATN), six Innovative Research (IRU)
universities and three Regional University Network
(RUN).

The interview script was designed by the project team
using the six project themes as a framework. The script
consisted of a number of semi-structured questions. The
questions related to this paper can be found in the
Appendix. The interviewer was encouraged to ask follow-
up questions if interesting practices or new issues
emerged. The script was trialed in two pilot phone
interviews, and slight modifications were made to reduce
duplication of the topics covered and to reduce the likely
interview time. The revised script was used for all
subsequent interviews. Interviewees were sent the list of
questions prior to the interview so that they would be
aware of the nature of the questions to be covered. All
interviews were conducted by telephone during February

and March 2014, at a time convenient to the interviewee
concerned. A consistent approach was assured by the fact
that all interviews were conducted by the same person.

Twenty-nine interviews (one interview involved two
participants) were recorded, ranging in duration from 16
to 74 minutes and averaging 53 minutes. Detailed
summary notes were taken during each interview. After
each interview the notes were elaborated upon and
organised into the six themes. The notes were annotated
with the approximate times at which the discussion could
be found in the audio recording. The interview notes were
then examined to find important issues and to identify
possible case studies of good practice for further
investigation. Detailed quotes from relevant interviews
were subsequently transcribed as required. A more
detailed description of the methodology used in this
project can be found at Experiences of first year students
in ICT courses: good teaching practices: Final Report:
ICT student first year experiences
(http://www.acdict.edu.au/ALTA.htm).

The following section reports the results of our
investigation into teaching context. We first describe the
curricula and curriculum designs of first year ICT courses
drawing upon the data gathered from the “what we teach”
theme. Following is an investigation of teaching models
and teaching spaces drawn from the “where we teach”
theme. These themes cover the broad area of the teaching
context.

3 What we teach
Our investigation of what we teach focused on the

core curriculums of the first year of ICT courses in
Australian universities and the process of curriculum
design. Relevant courses from all Australian universities
were identified and the units offered to first-year students
examined to identify similarities between courses and
units as well as key areas of differentiation. The teaching
of computer programming was explored in detail as this
topic is widely researched and discussed in the literature.
Also covered in this theme were factors influencing
course and unit design, such as the guiding principles
adopted from the Australian Computer Society (ACS)
and Association for Computing Machinery (ACM)/
Institute of Electrical and Electronics Engineers (IEEE).

3.1 ICT Courses in Australia
A survey of ICT courses in Australian universities

found that all but one university (University of Notre
Dame) offer an ICT or related degree. While most degree
offerings are located in capital cities, a substantial
number are offered in rural locations, and a number in
off-campus mode.

The faculties that offer ICT degrees are predominantly
Information Technology, Science, Engineering, or
Business (or faculties that are a combination of these
disciplines). There are now very few dedicated ICT
faculties in Australian universities. Different ICT degrees
are in some cases taught within different faculties in the
same university, depending on the context of the degree.
For example, a Computer Science degree may be located
within an Engineering or Science faculty or department,
while an Information Systems degree may be located
within a Business faculty or department. In most cases,

CRPIT Volume 160 - Computing Education 2015

102

however, one faculty takes ownership for all ICT-related
degrees.

The degrees offered by Australian universities
typically fall into one of the following broad
categories/contexts:

• general ICT
• ICT with a major or specialisation. Majors

typically include
o games programming
o software/application development

(including mobile)
o security
o networks
o web design and development
o multimedia

• software engineering
• computer science
• business information systems

General ICT courses, most with majors, make up the
majority of courses offered. Computer science ranks
second, software engineering third, and information
systems / business information systems fourth. There are
also a number of miscellaneous ICT courses focusing on
other specialist areas such as multimedia, game
development, cyber-security and engineering.

In keeping with our focus, we consider units situated
in the first year of a typical progression in these courses.
Units studied in first year depend on the particular course
being taken; however, there is some consistency in units
undertaken by students in their first year of ICT study.
Common units include:

• programming
• database
• systems analysis
• computing fundamentals
• mathematics (predominantly in computer

science courses)
Programming and database are the units most

frequently studied by first-year ICT students.

3.2 Literature Perspectives
In the literature search 28 research papers were found

related to the theme of ‘what we teach’ in the context of
ICT university courses. Thirteen papers were focused on
the first year of ICT courses and ten papers were set in
the Australian context. However, only three papers were
set in both Australian and first-year contexts (Corney,
Teague & Thomas, 2010; Mason, Cooper & de Raadt,
2012; Mason & Cooper, 2014) and all three of these
papers relate specifically to programming.

Approximately half the papers found discuss high-
level curriculum design issues. These papers typically
present guides and frameworks for using noted ICT
charters (such as ACS, ACM, IEEE, and SFIA) in
curriculum design, often highlighting specific case
studies of recently redesigned curriculums
(Adegbehingbe & Obono 2012; Koohang et al, 2010;
Herbert et al, 2013a). Because of this, the literature on
curriculum is often not focused on the first-year context.
While discussion of curriculum design can identify
certain needs for structuring courses with supporting

progressions, these papers typically discuss design of an
entire three- or four-year curriculum.

Moves to adopt SFIA in curriculum design are evident
in the more recent papers. Several Australian universities
appear to have adopted this framework as a key charter in
redesigning their curriculums, with the University of
Tasmania being a well-documented example of this
(Herbert et al, 2013a; 2013b; 2013c; 2014). The SFIA
framework is of importance in its presentation not only of
core skills as they relate to industry but also of levels of
responsibility, which can be aligned to different year
levels in a course (von Konsky, Jones & Miller, 2014).
Consequently, these papers provide some insight into
curriculum design within the first-year context.

The publications relating most closely to the first-year
context deal with narrower fields of study within the first
year. For example, discussion of programming
curriculum and issues in most cases relates specifically to
novice programmers, thus usually the first-year context.
Indeed, programming was clearly the most represented
context, with 11 papers relating specifically to curriculum
issues within this area of study. Mason, Cooper & de
Raadt (2012) and Mason & Cooper (2014) provide a
comprehensive analysis of trends in introductory
programming courses in Australian universities. They
note a fragmentation of choice of the programming
language being used, and a reduction in the use of Java as
a language in introductory programming courses. Issues
raised by other researchers relate mainly to the choice of
programming language and environment (Fincher et al,
2010; Stefik & Siebert, 2013), and restructure of
curriculum to better support novice programmers
(Corney, Teague & Thomas, 2010; Hu, Winikoff &
Cranefield, 2013; Thota & Whitfield, 2010). The
narrower focus suggests that notions of what we teach are
more easily placed in the context of a specific year and
unit, while broader curriculum issues (both design and
content) will focus on whole courses.

Other specific contexts for discussion of curriculum
issues were found, although much less prevalent than
those relating to programming. Subject areas found
include computer systems (Benkrid & Clayton, 2012;
Patitsas et al, 2010) and software development (Thomas,
Cordiner & Corney, 2010). Other sub-themes that were
found in the literature relating to curriculum include
investigation of gender issues (Koppi, Roberts & Naghdy,
2012) and career progression and its implications for
curriculum design (von Konsky, Jones & Miller, 2014).

In summary, there is little recent literature about what
is taught to first-year students in the Australian context.
While there is research relating to curriculum
development in higher-education ICT courses, it tends not
to address specific first-year issues, which are typically
reported on in relation to specific topics such as
programming. This suggests that there is scope for further
research relating to how curriculum is developed in
consideration of the needs of first-year students.

3.3 Current Practice in Australia
The interview questions related to the theme of ‘what

we teach’ sought added insights into the nature of first-
year ICT courses in terms of student demographics, the

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

103

development of the teaching curriculum and, more
specifically, programming languages taught.

Demographics of first year of ICT courses

Enrolments in the first year of ICT courses vary
considerably across Australia, ranging from
approximately 100 to 500 students. According to
interviewees it is often difficult to gauge exactly how
many students are in the first year of a course, as different
students enter the courses by different pathways, some of
which will attract credit for designated units. Many
interviewees made informed estimates of the numbers on
the basis of enrolment numbers in units that were core for
first-year students, along with the course information of
those students. Based on the interviewees’ responses, just
over 5000 first-year students were estimated to be
enrolled in ICT courses across the 25 universities
contacted.

The mix of students also varied considerably across
the universities. Many interviewees were not privy to the
breakdown of local versus international students, but
most were able to give informed estimates, again based
on class demographics. In view of the uncertainty of these
estimates, we present only the broad picture. Six
institutions indicated very low numbers of overseas
students (less than 10%), while another six indicated that
50% or more of their first-year cohort were international
students. Between these extremes, the majority of
interviewees (7) estimated their international enrolments
as 20-30% of their cohorts. There would appear to be
scope for research into the internationalisation of the
teaching curriculum, not only because of these
demographic estimates, but also because of the
international nature of ICT.

Curriculum design

Interviewees were asked whether the design of their
courses was influenced by any external curriculums. Most
interviewees indicated that their courses are accredited by
the Australian Computer Society. Many mentioned that
their course designs were influenced or inspired by
external bodies such as the ACS, ACM, and IEEE as well
as industry companies like CISCO. Although these
organisations played an important role in the
consideration of their curriculum design, interviewees
were often unsure exactly how the frameworks provided
by these organisations were specifically used. An
illustrative response:

“The degree programs are a combination. It is not
directly taken from the ACM/IEEE computer science
curriculum but they were used as input into the design of
the course. So we used the ACM/IEEE curriculum as well
as the ACS guidelines. The courses are ACS accredited.”
(U1)

There is little literature on the exact role of bodies
such as ACS, ACM, and IEEE in curriculum design,
suggesting an opportunity for research to seek greater
insights into the role of such formal bodies in the design
and development of the tertiary curriculum.

The use of SFIA in curriculum design was notably
absent from the interviews. Recent literature suggests that
it can play a major role in the design of courses, so it was
of interest that it was not mentioned by any interviewees.

This is likely to change in the near future, as SFIA gains
awareness through both the ACS and published literature.

Programming languages

Interviewees were asked what programming languages
are introduced to students in their first-year ICT courses.
The most common languages were Java (16) and Python
(12). Java has been well documented as a language used
to teach students programming both at a foundation level
and also as an introduction to object-oriented
programming. While Java remains a popular choice, a
number of interviewees reported recent moves away from
Java as an introductory language, in many cases to
Python. Interviewee U4 explained this shift in languages:

“Java was seen as having too much excess baggage to
get people off the ground that just wanted to learn the
basics. They didn’t go into object-oriented or object-
based programming so the need for all of the concepts
around object-oriented programming weren’t necessary
and so instead they wanted to build the strength in the
fundamentals and the wisdom was that Python would be
better.”

Another interviewee echoed these sentiments, noting
that:

“We are considering at the moment moving away from
Java and maybe going to something like Python. We’ve
used Java for a fair while but it’s losing relevance in a lot
of areas and is a quite bloated language. Something like
Python is more elegant and sophisticated in some ways
and enforces some good program structure and at least
as good at formatting, so it’s better for the first-year
students to introduce them to the programming
concepts.” (U6)

In contrast, interviewee U7b indicated a move from
C++ to Java as the introductory programming language,
“Changed from C++ to Java, very popular in industry,
slightly easier.”

Concerns have been raised in the literature about the
significant learning challenges faced by novice
programmers starting with an object-oriented language
such as Java, and some responses in the interviews appear
to address these concerns. While a number of
interviewees discussed their shift to Python, others had
moved to less traditional languages and environments
such as Processing, Gamemaker, and Scribble (a variant
of the Scratch programming environment). The literature
also includes the move to environments such as Alice.
These examples appear to place the emphasis on problem
solving rather than language syntax or complex
programming paradigms; however, little research has
been found that describes the learning outcomes of these
changes.

One interviewee said that the move from Java to
Scribble, a visual programming language, was to “get
students to focus on solving problems rather than
concentrating on syntax” (U15b). A program is
constructed in Scribble by assembling visual blocks
representing code segments, a process that shields novice
programming students from syntax and code and allows
them to focus on programming logic. This is seen as a
more accessible environment than a traditional
programming language for introducing fundamental

CRPIT Volume 160 - Computing Education 2015

104

programming concepts to novice programmers. As
interviewee U15b explains:

“It was a fair undertaking, and it was a fairly big
decision to say let’s not start students in a syntactic
language like Java. I mean there is always the question of
which language do you choose. So it was a very
concerted effort to get away from that and to say no we
need to focus on creating problem solvers first.”

Interviewee U15b observed that the student
evaluations for the unit have been really good, but the
important consideration is how the students will perform
in subsequent units. Students study at least one more
programming language in their course, for example,
Python, Java or C++. The transition to these subsequent
programming units is currently of some concern, and the
effects of the change are currently being formally
evaluated.

The introduction of programming languages focused
on mobile development platforms is a relatively recent
inclusion in the programming curriculum prompted by
current industry trends. Interviewees U24 (two
interviewees were involved in this interview at the same
time) described the introduction of Objective C and XML
as the programming languages for smartphone/tablet
development in iOS:

“We actually have started introducing some new
programming languages. We now include Objective C
We now also teach XML and we’ve introduced
smartphones and iPads into our learning space too.”

This further demonstrates the diversity of approaches
that are currently being explored in introductory
programming units. “We introduced the Mac to replace
the tablet PCs two years ago and they were introduced so
we could teach iOS languages.” In part this change was
made to appeal to students by targeting a computing
environment, in the form of mobile devices such as
smartphones and tablets, with which the students engaged
on a regular basis. In terms of research, a formal
evaluation and comparison of the range of approaches
currently being trialled in the Australian context would be
of benefit.

Some universities place the introduction to
programming into a web development context, using
web-scripting languages such as Javascript and HTML.
Other languages mentioned included Visual Basic, C, C#
and ActionScript (Flash). One interviewee indicated that
a number of languages are covered across their degrees,
but not in the first programming unit:

“What we do in the first semester. We teach it in a
language neutral fashion… We deliver the material in
language neutral fashion so it’s about the programming
concepts not specifically about the one language. We
teach them the way to do something in general not in a
particular language. Then we have material that helps
them learn how to apply those concepts in a particular
language.” (U1)

3.4 Summary
What the literature and especially the interviews

highlight is that there appears to be little consensus as to
what programming language or environment best
supports novice programmers. Many institutions
recognise the inherent difficulties for novice

programmers, but the quest for the ideal learning
approach appears far from over.

The study of curricula and curriculum design provides
a background for our investigation of teaching context in
terms of teaching models and teaching spaces.

4 Teaching Context
Our investigation of teaching context was drawn from

the ‘where we teach’ theme which focused on the
teaching models and teaching and learning spaces used
for first-year ICT courses in Australian universities. It
considered the design and use of new teaching spaces and
the redesign of existing spaces, either physical or virtual.
For virtual teaching spaces, the theme included teaching
and learning in situations enabled through the use of
mobile and ubiquitous technologies.

4.1 Literature Perspectives
The systematic literature review found 13 papers that

were concerned with the ‘where we teach’ theme. All of
the papers were set in the higher education sector and in
the context of programming – all but one of them in
introductory programming; two were Australian studies.
The papers found for this theme report studies of a variety
of different teaching and learning spaces. Govender
(2009) explored the lecture setting in an investigation of
the influence of the learning context on how students
approach the task of learning to program and their
ultimate success. Cheryan, Meltzoff & Kim (2011)
investigated the effect of virtual learning environment
design on male and female students’ interest and
anticipated success in an introductory computer science
course. Both studies concluded that context was an
important factor in students’ success in learning to
program.

A study by Howles (2009) compared the impact of
different learning environments on student retention. The
findings revealed that a change from a studio
environment (20 students with access to computers) to an
active learning environment (40 students without
computers) did not negatively impact student retention.

Australian researchers Alammary, Carbone & Sheard
(2012) describe the implementation of a virtual ‘smart
lab’ for assisting programming lab class teachers. The
smart lab monitors students’ progress as they perform
programming tasks, enabling instructors to readily
respond to individual students and assess the overall
progress of the class. An evaluation demonstrated the
usefulness of the smart lab in providing timely and
appropriate feedback to the teachers. Another Australian
study by Maleko, Hamilton & D’Souza (2012) explored
novices’ perceptions and experiences of a mobile social
learning environment designed to enhance student-to-
student interactions. A key finding of this study is that
most students engaged more with their learning and with
colleagues in the mobile social environment than in the
face-to-face environment. Small learning communities
were formed, enabling students to interact regardless of
their physical location or the time of day.

Considerable resources have been expended on the
development of environments to support the teaching and
learning of programming, and a number of these have
been specifically designed for introductory programming

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

105

students. There are many studies of the use of these
environments for engaging students in the learning
process and helping them to learn to program. Verginis et
al (2011) studied a web-based learning environment,
SCALE (Supporting Collaboration and Adaption in a
Learning Environment), and found it valuable for
supporting learning in introductory computer science.
Moons and De Backer (2012) present an interactive
programming environment, EVizor (Educational
Visualization of the Object Oriented Run-time),
implemented as a Netbeans plugin. The EVizor system
visualises program execution and incorporates
explanations and embedded quizzes. The system design is
founded on constructivist and cognitivist learning
theories. A series of evaluations and experiments showed
that it is useful in helping students understand program
behaviour.

Fincher and Utting (2010) introduce Alice (Cooper,
2010), Scratch (Maloney et al, 2010) and Greenfoot
(Kölling, 2010), three environments widely used in
introductory programming courses, each of which has a
different focus and approach. The design rationale and
pedagogical approach that each supports are explained in
a series of articles by the designers. Wellman, Davis &
Anderson (2009) introduced Alice into an introductory
programming course to increase students’ interest in
computer science. They report that students were
motivated and engaged in the learning activities.
However, Garlick and Cankaya (2010) had a different
experience. In an experimental study they found that
students who used Alice in their introductory
programming course had lower performance and
responded less favourably compared to students who
were given traditional instruction.

In summary, there are very few examples of recent
literature discussing the first-year ICT learning
environment in the Australian context, therefore further
research is needed in this area. Current research focuses
on specific examples of virtual lab software, the inclusion
of social networking tools to promote learning
communities, web-based collaborative learning
environments, and a variety of introductory programming
environments. There is a need to conduct further research
on both physical and virtual learning environments that
are tailored to the needs of first-year students in the ICT
context.

4.2 Current Teaching Context in Australia
The interview questions related to the teaching context

sought detailed information about teaching spaces in
Australian universities and how they are used. In addition
to describing the physical teaching spaces, interviewees
were asked to provide information about their teaching in
online or blended environments. Their responses gave
insights into current teaching models and into the
physical and virtual spaces where teaching is conducted.
The responses to these questions are discussed under the
main topics that were identified from the analysis of the
interview data.

Teaching models

An important factor in a discussion of ‘where we
teach’ is the teaching model that is used. The most

common teaching models used in the universities in our
study are the traditional lecture/laboratory and
lecture/tutorial/laboratory combinations. However, there
were indications that a number of institutions had moved
or were in the process of moving to different models,
often involving a shift from physical to virtual teaching
spaces. Many interviewees mentioned recent changes to
lectures. Interviewee U21 described a radical change
where a new degree has been implemented with only a
single introductory lecture. Subsequently, students are
provided with audio video clips and a text book in paper
or electronic form. Tutorial classes are either on-campus
or online.

A number of interviewees indicated that the teaching
time devoted to lectures has been reduced. For example,
interviewee U10 stated:

“So we used to have a very standard model of 3
lectures a week and 1 practical session and then we
moved it to 3 lectures a fortnight and 1 practical session
and 1 collaborative workshop session every week.”

In another example interviewee U7b indicated that
they had:

“Cut down lecture 2 hours to 1, less talking at the
students, the boring stuff. Gone with a tutorial and a
practical session, more hands on stuff particularly for the
first-years.”

In addition, “All recordings lectures and materials go
onto an online Blackboard forum,” so students can access
them when convenient.

Several interviewees mentioned the reduction of
lecture time in order to increase practical lab sessions. For
example, interviewee U24 commented:

“first-year programming a special case. … Combined
lecture and practical into a workshop. For online
students they submit weekly tasks to the lecturer and she
checks and gives feedback within 24 or 48 hours”.

In this case the lecturer combined the traditional
lecture and practical session into a 3- or 4-hour session (2
hours, a 1-hour break, then another 1 or 2 hours) and
called it a workshop. Interviewee U24 observes
enigmatically that “Workshop mode equals flipped
classroom minus the pre-class activities.” Although the
reduction in lecture time and the corresponding increase
in practical sessions was seen to be more resource-
intensive it was also seen to be more productive in terms
of increased student engagement and therefore increased
student retention.

The most common teaching innovation discussed by
interviewees was blended learning, and this was having
an influence on the way teaching space is used. From the
interviewees’ comments, however, it is apparent that
there are various understandings of the term ‘blended
learning’ and a variety of ways in which this teaching
model is implemented. A couple of interviewees used the
term to mean the provision of online resources to both on-
campus and online students. Several interviewees were
exploring the ‘flipped classroom’ model, where the
homework and class activities are reversed. Interviewee
U18 said that first-year students had reacted negatively to
this teaching model. She felt that the first-year students
were not organised enough to watch the videos on their
own and she questioned the suitability of this model for
first-year students. In a more extreme example,

CRPIT Volume 160 - Computing Education 2015

106

interviewee U7a indicated that they favoured “Small
lectures, big tutorials. Light presentation and heavy
practicals.” They indicated that they had “Removed face
to face lectures, some years ago” and placed “More
emphasis on tutorials with the support of online modules
using videos”. U7a further explained that “Students need
to look at video lectures and background readings before
[the] tutorial.”

Physical teaching spaces

Interviewees gave descriptions of their various
physical teaching spaces. Lectures are typically held in
theatres with capacities ranging from 100 to 400 students.
Tutorials are usually held in classrooms holding 30 to 40
students. Laboratory classes are typically held in
computer labs with space for 20 to 30 students, although
a couple of interviewees mentioned labs of 40 to 50
students.

Most interviewees agreed that lecture theatres are less
than ideal teaching and learning spaces. Many
interviewees raised the issue of lack of student attendance
at lectures. While there is a general shift towards reducing
time spent in lectures or replacing lectures with more
practical classes, there is also a considerable effort being
made to improve the learning experience in lectures.
Some have introduced new teaching models for lectures
and others employ a variety of techniques to motivate and
engage the students.

Recording of lectures is now commonplace, with half
the interviewees indicating that all lectures are recorded
at their institution. Some interviewees stated that lecture
recording is mandatory while others mentioned an opt-out
policy. At a couple of institutions, where lecture
recording systems are not readily available, some
individuals record their own lectures. Only a couple of
interviewees do not record their lectures in some way.
The most common recording system is Echo360; others
in use are Blackboard Collaborate and Lectopia. The
availability of lecture recordings (and in some cases
tutorial classes) has reduced the impetus for students to
attend on-campus.

Most innovation in the design of physical teaching
spaces is apparent in the computer labs where practical
classes are held. Computer labs are traditionally set up
with straight rows of tables and a computer for each
student. At a couple of institutions there are variations on
this arrangement. In one institution the lab has multiple
fronts and in another the computers are placed around the
four walls of the lab with the teacher in the centre.
However, a number of institutions have made more
radical changes to their computer labs, redesigning them
into collaborative learning spaces. One interviewee
described a room with tables seating 4 to 6 students, each
with a large screen and one keyboard. Another described
a similar teaching space with facilities for displaying the
work of each group on a central screen for the whole
class to view. Some of these labs hold more students than
traditional labs and have been designed as flexible
learning spaces.

A few interviewees mentioned more radical designs in
teaching spaces. At one institution there are dual teaching
spaces where students can move from a classroom setup
to a computer lab in a large room divided by a partition.

Another, smaller, institution uses only one type of
teaching space. The room seats 50-60 students at eight
sets of reconfigurable tables. This flexible teaching space
has multiple fronts with a data display unit, fixed and
mobile white boards and multiple power points around
the perimeter of the room and hanging from the ceiling.
One interviewee, describing a radical shift away from the
traditional teaching model to a blended learning model,
said that their learning spaces include “libraries, site
inspection and even corridor meeting, tearooms and
virtual teaching environments” (U7a).

Virtual teaching spaces

Some interviewees acknowledged the increasing
importance of virtual teaching spaces. Online learning is
happening at most institutions, either with units taught
only in online mode or with units taught online in
combination with on-campus teaching. A number of
interviewees mentioned small cohorts of online students
in their on-campus units. Several indicated that all their
units are available both on-campus and online, with
students having access to teaching resources made
available to both cohorts. They saw no difference
between the resources provided to their on-campus and
off-campus students. As interviewee U24 commented:

“I think we have two main teaching spaces – one is the
physical space and one is virtual space. The virtual space
is constructed with as much care to the design as the
physical space is.”

All institutions use a form of Learning Management
System (LMS) where typically all course materials are
placed. The most commonly used LMS are Blackboard
and Moodle. A couple of interviewees emphasised that
these are not really learning environments but just
delivery platforms for course content. One institution uses
Captivate Workshop for delivery of learning objects. A
couple of interviewees mentioned other online
environments developed for use in specific courses.
ViLLE (a visual learning tool) is a collaborative
education platform developed specifically for learning
programming, and IVLE (Informatics Virtual Learning
Environment) is an online interactive instructional system
for use in teaching programming and algorithmic problem
solving.

4.3 Discussion
The aims of the study were: 1) to gain an overview of

what is taught in first year ICT courses in Australia; 2) to
gain understanding of the teaching delivery models used;
3) to gain understanding of where teaching is conducted;
and 4) to identify examples of good practice in first year
ICT courses in Australia that could be adopted and
disseminated widely. A key finding from our
investigation of what is taught in first years ICT courses
was that there is little consistency with regard to the
programming languages that are introduced to new
programmers in ICT courses. While Java and Python are
very prominent across the universities of the Australian
academics we interviewed, there appears to be no
consensus on the best approach to take with novice
programmers. This is also reflected in the literature, with
research often highlighting the problematic nature of
introducing both programming concepts and syntax.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

107

There has been a perceptible trend towards programming
environments where the focus has moved away from
syntax to problem solving. This is an area that needs
investigation to determine how students respond to
learning programming in these environments.

Further scope for research is in the use of formal skills
frameworks provided by organisations such as ACS,
ACM and IEEE. There is little literature and little
understanding by the interviewees of exactly how course
curriculums are developed with these frameworks in
mind. There are a number of recent publications
regarding SFIA and its role in curriculum development,
and literature such as this may present an opportunity for
more formal acknowledgement of these frameworks in
this area.

Our investigation of the literature on teaching context
found little specific research on the physical and virtual
learning spaces tailored specifically for the needs of first-
year ICT students in the Australian context. This
contrasts strongly with the significant changes to practice
highlighted by the interviewees, including changes to the
balance between lectures and practical labs and the
changing nature of the layout of computing laboratories.
A prominent topic raised by interviewees was the design
and use of teaching spaces to engage students in active
learning experiences. The layout of physical teaching
spaces was reported to be increasingly diverse and
flexible. Various new physical and virtual learning
environments are tailored to the needs of first-year ICT
students. Further research is needed to assess the impact
of these changes to the teaching environment on student
performance and on the student experience.	 	

There were strong indications from the interviewees
that the provision of online resources is more prevalent,
resulting in an increase in flexible study options,
including the integration of social networking tools to
assist the formation of student learning communities.
These changes highlighted the need for further research in
order to assess their impact on the first-year ICT student
experience.

5 Conclusion
Our investigation of teaching context in first-year ICT

courses in Australia has highlighted many new initiatives
in teaching delivery models and the design of teaching
spaces, driven largely by a desire to provide interesting
learning environments and active learning experiences.
The research has identified the need to undertake further
research investigating such areas as curriculum design,
development of graduate attributes, and understanding the
needs of the ICT industry. An imperative now is also to
assess the effectiveness of the innovations identified in
engaging students and enhancing their learning. Evidence
from such evaluations is essential for promotion of these
innovations and driving change in the ICT teaching
sector.

6 Acknowledgements
This project was undertaken with the support of the

Australian Council of Deans of Information and
Communication Technology through the ALTA Good
Practice Reports Commissioned for 2013–2014 grant
scheme (http://www.acdict.edu.au/ALTA.htm).

The project team would like to acknowledge the work
of Beth Cook who worked as a research assistant to
conduct the interviews and to prepare the detailed
interview notes.

7 References
Adegbehingbe, O. D., & Eyono Obono, S. D. E. (2012).

A framework for designing information technology
programmes using ACM/IEEE curriculum guidelines.
World Congress on Engineering and Computer Science
2012.

Alammary, A., Carbone, A., & Sheard, J. (2012).
Implementation of a smart lab for teachers of novice
programmers. 14th Australasian Computing Education
Conference, 121-130.

Benkrid, K., & Clayton, T. (2012). Digital hardware
design teaching: an alternative approach. ACM
Transactions on Computing Education, 12(4), 13.

Cheryan, S., Meltzoff, A. N., & Kim, S. (2011).
Classrooms matter: the design of virtual classrooms
influences gender disparities in computer science
classes. Computers & Education, 57(2), 1825-1835.

Cooper, S. (2010). The design of Alice. ACM
Transactions on Computing Education, 10(4), 15.

Corney, M., Teague, D., & Thomas, R. N. (2010).
Engaging students in programming. 12th Australasian
Computing Education Conference, 63-72.

Fincher, S., Cooper, S., Kölling, M., & Maloney, J.
(2010). Comparing Alice, Greenfoot & Scratch. 41st
ACM Technical Symposium on Computer Science
Education, 192-193.

Fincher, S., & Utting, I. (2010). Machines for thinking.
ACM Transactions on Computing Education, 10(4), 13.

Garlick, R., & Cankaya, E. (2010). Using Alice in CS1: A
quantitative experiment. 15th Conference on
Innovation and Technology in Computer Science
Education, 165-168.

Govender, I. (2009). The learning context: Influence on
learning to program. Computers & Education, 53(4),
1218-1230.

Herbert, N., Dermoudy, J., Ellis, L., Cameron-Jones, M.,
Chinthammit, W., Lewis, I., de Salas, K. L. &
Springer, M. (2013a). Stakeholder-led curriculum
redesign. 15th Australasian Computing Education
Conference, 51-59.

Herbert, N., Lewis, I., & Salas, K. De. (2013b). Career
outcomes and SFIA as tools to design ICT curriculum.
24th Australasian Conference on Information Systems,
1-10.

Herbert, N., Salas, K. De, Lewis, I., Cameron-Jones, M.,
Chinthammit, W., Dermoudy, J., Ellis, L. & Springer,
M. (2013c). Identifying career outcomes as the first
step in ICT curricula development. 15th Australasian
Computing Education Conference, 31-40.

Herbert, N., Salas, K. De, Lewis, I., Dermoudy, J., &
Ellis, L. (2014). ICT curriculum and course structure  :
the great balancing act. 16th Australasian Computing
Education Conference, 21-30.

CRPIT Volume 160 - Computing Education 2015

108

Howles, T. (2009). A study of attrition and the use of
student learning communities in the computer science
introductory programming sequence. Computer
Science Education, 19(1), 1-13.

Hu, M., Winikoff, M., & Cranefield, S. (2013). A process
for novice programming using goals and plans. 15th
Conference on Innovation and Technology in
Computer Science Education, 3-12.

Koohang, A., Riley, L., Smith, T., & Floyd, K. (2010).
Design of an information technology undergraduate
program to produce IT versatilists. Journal of
Information Technology Education, 9, 99-113.

Koppi, T., Roberts, M., & Naghdy, G. (2012).
Perceptions of a gender-inclusive curriculum amongst
Australian information and communications
technology academics. 14th Australasian Computing
Education Conference, 7-14.

Kölling, M. K. (2010). The Greenfoot programming
environment. ACM Transactions on Computing
Education, 10(4), 14.

Maleko, M., Hamilton, M., & D’Souza, D. (2012).
Novices’ perceptions and experiences of a mobile
social learning environment for learning of
programming. 17th Conference on Innovation and
Technology in Computer Science Education, 285-290.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &
Eastmond, E. (2010). The Scratch programming
language and environment. ACM Transactions on
Computing Education, 10(4), 16.

Mason, R., & Cooper, G. (2014). Introductory
programming courses in Australia and New Zealand in
2013 – trends and reasons. 16th Australasian
Computing Education Conference, 139-147.

Mason, R., Cooper, G., & de Raadt, M. (2012). Trends in
introductory programming courses in Australian
universities: languages, environments and pedagogy.
14th Australasian Computing Education Conference,
33-42.

Moons, J., & De Backer, C. (2013). The design and pilot
evaluation of an interactive learning environment for
introductory programming influenced by cognitive load
theory and constructivism. Computers & Education,
60(1), 368-384.

Patitsas, E., Voll, K., Crowley, M., & Wolfman, S.
(2010). Circuits and logic in the lab: toward a coherent
picture of computation. 15th Western Canadian
Conference on Computing Education, 7.

Stefik, A., & Siebert, S. (2013). An empirical
investigation into programming language syntax. ACM
Transactions on Computing Education, 13(4), 19.

Thomas, R. N., Cordiner, M., & Corney, D. (2010). An
adaptable framework for the teaching and assessment
of software development across year levels. 12th
Australasian Computing Education Conference, 165-
172.

Thota, N., & Whitfield, R. (2010). Holistic approach to
learning and teaching introductory object-oriented
programming. Computer Science Education, 20(2),
103-127.

Verginis, I., Gogoulou, A., Gouli, E., Boubouka, M., &
Grigoriadou, M. (2011). Enhancing learning in
introductory computer science courses through
SCALE: an empirical study. IEEE Transactions on
Education, 54(1), 1-13.

von Konsky, B. R., Jones, A., & Miller, C. (2014).
Visualising career progression for ICT professionals
and the implications for ICT curriculum design in
higher education. 16th Australasian Computing
Education Conference, 13-20.

Wellman, B. L., Davis, J., & Anderson, M. (2009). Alice
and robotics in introductory CS courses. 5th Richard
Tapia Celebration of Diversity in Computing
Conference: Intellect, Initiatives, Insight, and
Innovations, 98-102.

8 Appendix
Below are the indicative interview questions used to

capture current practice regarding student demographics,
curriculum, and teaching spaces:
Demographics
• What undergraduate computing degree(s) do you

offer?
• In which faculty? Or are they multi-faculty?
• How big is the first-year cohort? (We agreed that we

were talking principally here about Australian
campuses, though some respondents with overseas
offerings might also mention those.)

• What’s the demographic profile of the students
(overseas / domestic / distance / full-time / part
time)?

What we teach
• What ICT courses/subjects/units are offered to first-

year students? Briefly describe the content of each
course.

• What programming languages are taught? What
other software packages are taught?

• Is the content of these courses based on some
external curriculum, such as the ACM/IEEE
curriculum, or more on your group’s own design?

Where we teach
• Describe your teaching spaces.
• In addition to physical teaching spaces, what

teaching do you do in blended or online
environments?

• Have you made any changes recently (in the past 5
years)? What? Why? Has it worked?

• How do you know (evaluation)?

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

109

